Spis treści publikacji pt. „Visualization Analysis and Design”.
Tytuł: „Visualization Analysis and Design”
Autor: Tamara Munzner
Wydawca: A K Peters/CRC Press
Data wydania: 2014-11-26
Język: Angielski
Liczba stron: 428
Spis treści
Spis treści / Table of contents
Preface / xv
Why a New Book? / xv
Existing Books / xvi
Audience / xvii
Who’s Who / xviii
Structure: What’s in This Book / xviii
What’s Not in This Book / xx
Acknowledgments / xx
1 What’s Vis, and Why Do It? / 1
1.1 The Big Picture / 1
1.2 Why Have a Human in the Loop? / 2
1.3 Why Have a Computer in the Loop? / 4
1.4 Why Use an External Representation? / 6
1.5 Why Depend on Vision? / 6
1.6 Why Show the Data in Detail? / 7
1.7 Why Use Interactivity? / 9
1.8 Why Is the Vis Idiom Design Space Huge? / 10
1.9 Why Focus on Tasks? / 11
1.10 Why Focus on Effectiveness? / 11
1.11 Why Are Most Designs Ineffective? / 12
1.12 Why Is Validation Difficult? / 14
1.13 Why Are There Resource Limitations? / 14
1.14 Why Analyze? / 16
1.15 Further Reading / 18
2 What: Data Abstraction 20
2.1 The Big Picture / 21
2.2 Why Do Data Semantics and Types Matter? / 21
2.3 Data Types / 23
2.4 Dataset Types / 24
2.4.1 Tables / 25
2.4.2 Networks and Trees / 26
2.4.2.1 Trees / 27
2.4.3 Fields / 27
2.4.3.1 Spatial Fields / 28
2.4.3.2 Grid Types / 29
2.4.4 Geometry / 29
2.4.5 Other Combinations / 30
2.4.6 Dataset Availability / 31
2.5 Attribute Types / 31
2.5.1 Categorical / 32
2.5.2 Ordered: Ordinal and Quantitative / 32
2.5.2.1 Sequential versus Diverging / 33
2.5.2.2 Cyclic / 33
2.5.3 Hierarchical Attributes / 33
2.6 Semantics / 34
2.6.1 Key versus Value Semantics / 34
2.6.1.1 Flat Tables / 34
2.6.1.2 Multidimensional Tables / 36
2.6.1.3 Fields / 37
2.6.1.4 Scalar Fields / 37
2.6.1.5 Vector Fields / 37
2.6.1.6 Tensor Fields / 38
2.6.1.7 Field Semantics / 38
2.6.2 Temporal Semantics / 38
2.6.2.1 Time-Varying Data / 39
2.7 Further Reading / 40
3 Why: Task Abstraction / 42
3.1 The Big Picture / 43
3.2 Why Analyze Tasks Abstractly? / 43
3.3 Who: Designer or User / 44
3.4 Actions / 45
3.4.1 Analyze / 45
3.4.1.1 Discover / 47
3.4.1.2 Present / 47
3.4.1.3 Enjoy / 48
3.4.2 Produce / 49
3.4.2.1 Annotate / 49
3.4.2.2 Record / 49
3.4.2.3 Derive / 50
3.4.3 Search / 53
3.4.3.1 Lookup / 53
3.4.3.2 Locate / 53
3.4.3.3 Browse / 53
3.4.3.4 Explore / 54
3.4.4 Query / 54
3.4.4.1 Identify / 54
3.4.4.2 Compare / 55
3.4.4.3 Summarize / 55
3.5 Targets / 55
3.6 How: A Preview / 57
3.7 Analyzing and Deriving: Examples / 59
3.7.1 Comparing Two Idioms / 59
3.7.2 Deriving One Attribute / 60
3.7.3 Deriving Many New Attributes / 62
3.8 Further Reading / 64
4 Analysis: Four Levels for Validation / 66
4.1 The Big Picture / 67
4.2 Why Validate? / 67
4.3 Four Levels of Design / 67
4.3.1 Domain Situation / 69
4.3.2 Task and Data Abstraction / 70
4.3.3 Visual Encoding and Interaction Idiom / 71
4.3.4 Algorithm / 72
4.4 Angles of Attack / 73
4.5 Threats to Validity / 74
4.6 Validation Approaches / 75
4.6.1 Domain Validation / 77
4.6.2 Abstraction Validation / 78
4.6.3 Idiom Validation / 78
4.6.4 Algorithm Validation / 80
4.6.5 Mismatches / 81
4.7 Validation Examples / 81
4.7.1 Genealogical Graphs / 81
4.7.2 MatrixExplorer / 83
4.7.3 Flow Maps / 85
4.7.4 LiveRAC / 87
4.7.5 LinLog / 89
4.7.6 Sizing the Horizon / 90
4.8 Further Reading / 91
5 Marks and Channels 94
5.1 The Big Picture / 95
5.2 Why Marks and Channels? / 95
5.3 Defining Marks and Channels / 95
5.3.1 Channel Types / 99
5.3.2 Mark Types / 99
5.4 Using Marks and Channels / 99
5.4.1 Expressiveness and Effectiveness / 100
5.4.2 Channel Rankings / 101
5.5 Channel Effectiveness / 103
5.5.1 Accuracy /103
5.5.2 Discriminability / 106
5.5.3 Separability / 106
5.5.4 Popout / 109
5.5.5 Grouping / 111
5.6 Relative versus Absolute Judgements / 112
5.7 Further Reading / 114
6 Rules of Thumb / 116
6.1 The Big Picture / 117
6.2 Why and When to Follow Rules of Thumb? / 117
6.3 No Unjustified 3D / 117
6.3.1 The Power of the Plane / 118
6.3.2 The Disparity of Depth / 118
6.3.3 Occlusion Hides Information / 120
6.3.4 Perspective Distortion Dangers / 121
6.3.5 Other Depth Cues / 123
6.3.6 Tilted Text Isn’t Legibile / 124
6.3.7 Benefits of 3D: Shape Perception / 124
6.3.8 Justification and Alternatives / 125
Example: Cluster–Calendar Time-Series Vis / 125
Example: Layer-Oriented Time-Series Vis / 128
6.3.9 Empirical Evidence / 129
6.4 No Unjustified 2D / 131
6.5 Eyes Beat Memory / 131
6.5.1 Memory and Attention / 132
6.5.2 Animation versus Side-by-Side Views / 132
6.5.3 Change Blindness / 133
6.6 Resolution over Immersion / 134
6.7 Overview First, Zoom and Filter, Details on Demand / 135
6.8 Responsiveness Is Required / 137
6.8.1 Visual Feedback / 138
6.8.2 Latency and Interaction Design / 138
6.8.3 Interactivity Costs / 140
6.9 Get It Right in Black and White / 140
6.10 Function First, Form Next / 140
6.11 Further Reading / 141
7 Arrange Tables 144
7.1 The Big Picture /145
7.2 Why Arrange? / 145
7.3 Arrange by Keys and Values /145
7.4 Express: Quantitative Values / 146
Example: Scatterplots / 146
7.5 Separate, Order, and Align: Categorical Regions / 149
7.5.1 List Alignment: One Key / 149
Example: Bar Charts / 50
Example: Stacked Bar Charts / 51
Example: Streamgraphs / 153
Example: Dot and Line Charts / 155
7.5.2 Matrix Alignment: Two Keys / 157
Example: Cluster Heatmaps / 158
Example: Scatterplot Matrix / 160
7.5.3 Volumetric Grid: Three Keys / 161
7.5.4 Recursive Subdivision: Multiple Keys / 161
7.6 Spatial Axis Orientation / 162
7.6.1 Rectilinear Layouts / 162
7.6.2 Parallel Layouts / 162
Example: Parallel Coordinates / 162
7.6.3 Radial Layouts / 166
Example: Radial Bar Charts / 167
Example: Pie Charts / 168
7.7 Spatial Layout Density / 171
7.7.1 Dense / 172
Example: Dense Software Overviews //172
7.7.2 Space-Filling / 174
7.8 Further Reading / 175
8 Arrange Spatial Data /178
8.1 The Big Picture / 179
8.2 Why Use Given? / 179
8.3 Geometry / 180
8.3.1 Geographic Data / 180
Example: Choropleth Maps / 181
8.3.2 Other Derived Geometry / 182
8.4 Scalar Fields: One Value / 182
8.4.1 Isocontours / 183
Example: Topographic Terrain Maps / 183
Example: Flexible Isosurfaces / 185
8.4.2 Direct Volume Rendering / 186
Example: Multidimensional Transfer Functions / 187
8.5 Vector Fields: Multiple Values /189
8.5.1 Flow Glyphs / 191
8.5.2 Geometric Flow / 191
Example: Similarity-Clustered Streamlines / 192
8.5.3 Texture Flow / 193
8.5.4 Feature Flow / 193
8.6 Tensor Fields: Many Values / 194
Example: Ellipsoid Tensor Glyphs / 194
8.7 Further Reading / 197
9 Arrange Networks and Trees / 200
9.1 The Big Picture / 201
9.2 Connection: Link Marks / 201
Example: Force-Directed Placement / 204
Example: sfdp / 207
9.3 Matrix Views / 208
Example: Adjacency Matrix View / 208
9.4 Costs and Benefits: Connection versus Matrix / 209
9.5 Containment: Hierarchy Marks / 213
Example: Treemaps / 213
Example: GrouseFlocks / 215
9.6 Further Reading / 216
10 Map Color and Other Channels / 218
10.1 The Big Picture / 219
10.2 Color Theory / 219
10.2.1 Color Vision / 219
10.2.2 Color Spaces / 220
10.2.3 Luminance, Saturation, and Hue / 223
10.2.4 Transparency / 225
10.3 Colormaps / 225
10.3.1 Categorical Colormaps / 226
10.3.2 Ordered Colormaps / 229
10.3.3 Bivariate Colormaps / 234
10.3.4 Colorblind-Safe Colormap Design / 235
10.4 Other Channels / 236
10.4.1 Size Channels / 236
10.4.2 Angle Channel / 237
10.4.3 Curvature Channel / 238
10.4.4 Shape Channel / 238
10.4.5 Motion Channels / 238
10.4.6 Texture and Stippling / 239
10.5 Further Reading / 240
11 Manipulate View / 242
11.1 The Big Picture / 243
11.2 Why Change? / 244
11.3 Change View over Time / 244
Example: LineUp / 246
Example: Animated Transitions / 248
11.4 Select Elements / 249
11.4.1 Selection Design Choices / 250
11.4.2 Highlighting / 251
Example: Context-Preserving Visual Links / 253
11.4.3 Selection Outcomes / 254
11.5 Navigate: Changing Viewpoint / 254
11.5.1 Geometric Zooming / 255
11.5.2 Semantic Zooming / 255
11.5.3 Constrained Navigation / 256
11.6 Navigate: Reducing Attributes / 258
11.6.1 Slice / 258
Example: HyperSlice / 259
11.6.2 Cut / 260
11.6.3 Project / 261
11.7 Further Reading / 261
12 Facet into Multiple Views / 264
12.1 The Big Picture / 265
12.2 Why Facet? / 265
12.3 Juxtapose and Coordinate Views / 267
12.3.1 Share Encoding: Same/Different / 267
Example: Exploratory Data Visualizer (EDV) / 268
12.3.2 Share Data: All, Subset, None / 269
Example: Bird’s-Eye Maps / 270
Example: Multiform Overview–Detail Microarrays / 271
Example: Cerebral / 274
12.3.3 Share Navigation: Synchronize / 276
12.3.4 Combinations / 276
Example: Improvise /277
12.3.5 Juxtapose Views / 278
12.4 Partition into Views / 279
12.4.1 Regions, Glyphs, and Views / 279
12.4.2 List Alignments / 281
12.4.3 Matrix Alignments / 282
Example: Trellis /282
12.4.4 Recursive Subdivision / 285
12.5 Superimpose Layers / 288
12.5.1 Visually Distinguishable Layers / 289
12.5.2 Static Layers / 289
Example: Cartographic Layering / 289
Example: Superimposed Line Charts / 290
Example: Hierarchical Edge Bundles / 292
12.5.3 Dynamic Layers / 294
12.6 Further Reading / 295
13 Reduce Items and Attributes / 298
13.1 The Big Picture / 299
13.2 Why Reduce? / 299
13.3 Filter / 300
13.3.1 Item Filtering / 301
Example: FilmFinder / 301
13.3.2 Attribute Filtering / 303
Example: DOSFA / 304
13.4 Aggregate / 305
13.4.1 Item Aggregation / 305
Example: Histograms / 306
Example: Continuous Scatterplots / 307
Example: Boxplot Charts / 308
Example: SolarPlot / 310
Example: Hierarchical Parallel Coordinates / 311
13.4.2 Spatial Aggregation ./313
Example: Geographically Weighted Boxplots / 313
13.4.3 Attribute Aggregation: Dimensionality Reduction / 315
13.4.3.1 Why and When to Use DR? / 316
Example: Dimensionality Reduction for Document Collections / 316
13.4.3.2 How to Show DR Data? / 319
13.5 Further Reading / 320
14 Embed: Focus+Context / 322
14.1 The Big Picture / 323
14.2 Why Embed? / 323
14.3 Elide / 324
Example: DOITrees Revisited / 325
14.4 Superimpose / 326
Example: Toolglass and Magic Lenses / 326
14.5 Distort / 327
Example: 3D Perspective / 327
Example: Fisheye Lens / 328
Example: Hyperbolic Geometry / 329
Example: Stretch and Squish Navigation / 331
Example: Nonlinear Magnification Fields /333
14.6 Costs and Benefits: Distortion / 334
14.7 Further Reading / 337
15 Analysis Case Studies 340
15.1 The Big Picture / 341
15.2 Why Analyze Case Studies? / 341
15.3 Graph-Theoretic Scagnostics / 342
15.4 VisDB / 347
15.5 Hierarchical Clustering Explorer / 351
15.6 PivotGraph / 355
15.7 InterRing / 358
15.8 Constellation / 360
15.9 Further Reading / 366
Figure Credits / 369
Bibliography / 375
Idiom and System Examples Index / 397
Concept Index / 399
Sprawdź więcej naszych zasobów o infografice:
Wszystkie produkty: https://infografikapolska.pl/sklep/
Kursy online: https://infografikapolska.pl/kursy-online-o-infografice/
Webinary: https://infografikapolska.pl/webinary-o-infografice/
Książki o infografice: https://infografikapolska.pl/ksiazki-o-infografice
Narzędzia dla infografików: https://infografikapolska.pl/narzedzia-dla-infografikow
Kreatywne pozdrowienia,
Informacje o artykule
Data aktualizacji: 27.12.2023 r.
Autor: Zespół Infografika Polska
Redakcja: Natalia Cieślak
Nadzór merytoryczny: Anita Bednarczyk
Korekta: Katarzyna Kamińska
Grafiki: infografikapolska.pl/baza
Źródło informacji: Institute of Infographics
Kontakt z redakcją: info@infografikapolska.pl
Data aktualizacji: 27.12.2023 r.
Autor: Zespół Infografika Polska
Redakcja: Natalia Cieślak
Nadzór merytoryczny: Anita Bednarczyk
Korekta: Katarzyna Kamińska
Grafiki: infografikapolska.pl/baza
Źródło informacji: Institute of Infographics
Kontakt z redakcją: info@infografikapolska.pl
Wyrusz z nami w wirtualną podróż do świata infografiki ilustracyjnej i dziennikarskiej!
Nasze kursy o infografice to wirtualna przygoda, w której możesz poczuć się jak prawdziwy odkrywca, eksplorując nieznany dotąd świat. To idealna możliwość poszerzenia swoich horyzontów, bez wychodzenia z domu.
Wyrusz z nami w wirtualną podróż do świata infografiki ilustracyjnej i dziennikarskiej!
Nasze kursy o infografice to wirtualna przygoda, w której możesz poczuć się jak prawdziwy odkrywca, eksplorując nieznany dotąd świat. To idealna możliwość poszerzenia swoich horyzontów, bez wychodzenia z domu.